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Abstract

The accurate estimation of workday length is essential to estimate total labor supply,
and has a significant bearing on the assessment of labor productivity and worker
well-being. Using probe request data from a 53 access-point, publicly-accessible Wi-Fi
network in the Lower Manhattan district of New York City, we develop a method to
measure localized worker activity patterns. Our Wi-Fi network data consist of over
10,000,000 probe requests per day, accounting for approximately 9.5 million unique
devices over the study period from April 2017 to September 2017. We describe worker
activity at various spatial and temporal aggregations in order to define baseline workday
patterns and compute the workday length. We find a substantial population with
characteristic workday lengths (e.g. 9am-5pm) during the workdays, as well as diurnal
activity patterns that are consistent with expected worker behavior. These temporal
patterns provide sufficient evidence to reinforce our assumptions about the ability to
identify worker populations from Wi-Fi data. Finally, we compute the workday length
for each identified worker and aggregate these workday lengths to estimate collective
workday patterns to understand the uniformity of worker behavior. We find workday
lengths of 7 hours and 40 minutes on average, which shorten substantially on Fridays
and days surrounding holidays. We also find considerable seasonal variation in total
workday hours supplied in our study area. This dynamic pattern of hours-worked
suggests that our methodology is able to accurately assess workday lengths at high
spatial resolution and temporal frequency. The ability to quantify hyperlocal worker
activity patterns has a broad range of applications, including estimates of localized
economic output and changes in labor supply.

Introduction 1

The accurate measurement of workday length is essential to estimate total labor supply, 2

and has a significant bearing on the assessment of labor productivity and worker 3

well-being [1]. Workday lengths are most commonly assessed through interviews and 4
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time-diary analysis, such as the American Time Use Survey. Similarly, day-time 5

population density is often estimated using surveys (such as the Longitudinal 6

Employer-Household Dynamics) or payroll data [2–4]. Analysis using such surveys has 7

established considerable heterogeneity in typical workday lengths over time, across 8

countries, and contract types (i.e., full-time, part-time, night shifts); and has been an 9

integral component of a substantial body of work to understand the determinants of 10

labor supply. 11

However, traditional survey methods have substantial and well-understood 12

limitations. Survey responses are subject to considerable response bias, recall bias, and 13

internal inconsistencies (i.e., total time budgeted to all activities does not add up to 24 14

hours) [5, 6]. The use of short time lags can mitigate some of these biases, at the 15

expense of restricting time analysis to a narrow window around the interview time. The 16

expense of conducting such interviews is also a substantial constraint to survey-based 17

time use analysis.1 These constraints limit the extent of time use analysis research 18

based on current datasets. 19

In this paper, we propose a new method for workday measurement using real-time 20

communication information that occurs between active Wi-Fi enabled devices (cell 21

phones, laptops, tablets, etc.) and a proximate Wi-Fi network. Specific signals between 22

these devices, known as probe requests, occur when a Wi-Fi enabled device is searching 23

for an available network. This standard communication protocol provides the Wi-Fi 24

network with information about the ”pinging” device, which can be collected and 25

analyzed for a broad range of applications, including presence detection, determining 26

mobility trajectories, and identifying transportation mode [7–10]. For the purposes of 27

understanding workday patterns, we use Wi-Fi probe request data to identify the 28

frequency and duration of devices as they become visible to the network, using these 29

aggregation measures to estimate workday lengths and labor supply. Relative to other 30

methods of estimating workday length, this approach provides a greater 31

representativeness of the local population, a more expansive time period for analysis, 32

and more precise estimates of workday patterns. 33

Our objectives are to identify and quantify patterns of workday length using Wi-Fi 34

probe request data and to demonstrate the potential of using these data to understand 35

worker activity at high spatiotemporal resolution. Using probe request data from a 53 36

access-point, publicly-accessible Wi-Fi network in the Lower Manhattan district of New 37

York City, we develop a method to identify worker activity by capturing first/last seen 38

observations of individual devices in our study region and performing a time series 39

analysis to filter out non-worker related activities. Our Wi-Fi network data consist of 40

over 10,000,000 probe requests per day, accounting for approximately 9.5 million unique 41

devices over the study period from April 2017 to September 2017. In the next stage of 42

our analysis, we describe worker activity discrete and aggregate levels in order to define 43

baseline workday patterns and compute the workday length. We find a substantial 44

worker population with characteristic workday lengths (e.g. 9am-5pm) during the 45

workdays, as well as diurnal activity patterns that are consistent with expected worker 46

behavior. These temporal patterns provide sufficient evidence to reinforce our 47

assumptions about the ability to identify worker populations from Wi-Fi data. Finally, 48

we compute the workday length for each identified worker and aggregate individual 49

workday lengths to estimate collective workday patterns and quantify heterogeneity in 50

worker behavior. 51

This work fits within a growing body of work using communication technologies and 52

smart devices to understand mobility patterns. This literature exploits the ubiquity of 53

communication networks and their potential to generate data that describe population 54

1The American Time Use Survey, for instance, contacts roughly 1,100 randomly selected individuals
(based on their participation in the Current Population Survey) each month.
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Fig 1. Locations of Wi-Fi access points in Lower Manhattan. Color
differences indicate different sub-networks in the study area.

dynamics with unprecedented granularity [11,12]. Wi-Fi probe request data, in 55

particular, have been used to develop a real-time census and classify population types 56

(i.e. worker, resident, visitor), as well as understand population mobility and trajectories 57

throughout a dense urban area [4, 13, 14]. Similarly, estimating building occupancy and 58

crowd size using Wi-Fi probe request are areas of interest for improving operations and 59

safety [9, 15–17]. While important advances have been made in similar areas, there is a 60

significant gap in the literature on using high resolution spatio-temporal data, such as 61

Wi-Fi probe requests, as a proxy for worker activity and productivity. 62

In the next section, we describe our source data and processing pipeline, as well as 63

our approach for computing workday patterns. It is followed by the description of our 64

results and a discussion of our findings and potential applications. We conclude with 65

ideas for future research. 66

Methods 67

The Wi-Fi probe request data used in this study was obtained from a public Wi-Fi 68

network comprised of 53 access points (APs) located throughout Lower Manhattan 2. 69

Fig 1 shows a map of Lower Manhattan and the locations of individual APs. As a study 70

area, Lower Manhattan is of considerable interest due to its intensity of business activity, 71

concentration of a range of firm types, and high population density. On average, the 72

network receives approximately 10,000,000 probe request per day. Each probe request 73

observation includes the signal strength based on an RSSI value, the anonymized MAC 74

address of the probing device, the MAC address of the AP which received the probe 75

request, and a timestamp of when the probe request occurred. Data were obtained from 76

April 2017 through Sept 2017, which contained 9.5 million unique device observations. 77

Storage, access, and use of these data are governed by NYU CUSP’s data use protocols 78

and a data management plan approved by NYU’s Institutional Review Board. 79

2Data were provided by the Alliance for Downtown New York, the organization that owns and
maintains the Wi-Fi network
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Fig 2. Number of first/last seen events per 10 minute intervals in Lower
Manhattan throughout the month of July. The blue area indicates first seen
counts while the orange indicates last seen counts. The black lines indicate the average
count for the entire study period and the shaded area denotes the July 4th holiday.

Data Processing 80

The first stage in processing the Wi-Fi dataset is to identify specific observations that 81

represent worker activity. A time series analysis is performed for each device to identify 82

activity patterns based on presence in the study area. We identify the first and last 83

observations (ofirst/last) of a device from the Wi-Fi dataset for each day and built a 84

binary vector that describes the hourly presence of each device throughout the study 85

period. A device receives a value of 1 if present and a value of 0 if not present for a 86

given hour. The bounding of ofirst/last observations to each day is required in order to 87

identify recurring patterns of presence, as well as provide a duration metric from which 88

a viable workday length can be calculated. A Fourier analysis of each discrete time 89

series is used to identify devices with strong weekly patterns, which are likely to 90

represent patterns of worker activity. Devices with non-weekly activity patterns 91

represent activity that may be attributed to populations other than workers in Lower 92

Manhattan (i.e. resident or tourist activity) and were removed. 93

After filtering the original dataset, we calculate workday length for each worker 94

based on the difference between the first seen observation (ofirst) and the last seen 95

observation (olast) for each day the device is present in the dataset. The daily median 96

workday length is then computed for each day as the median duration for all workers 97

present during the day. 98

Results and Discussion 99

After processing and filtering the original Wi-Fi dataset, the final dataset contains 100

255,122 worker devices for which we estimate collective worker activity patterns. 101

Aggregate Patterns of Worker Activity 102

Aggregate counts of ofirst (blue) and olast (orange) observations for one month are 103

shown in Fig 2. These observations are aggregated over 10 minute intervals and capture 104

the collective pattern of worker activity in Lower Manhattan. The average number of 105

ofirst/last observations are indicated by black lines and the shaded area indicates a major 106

holiday. During the weekday, ofirst observations reach an average peak of 3,000 107

observations (per 10 minutes) in the morning at 9 AM and olast observations reach an 108

average of 2,700 observations in the evening at 6 PM. On weekends, however, ofirst/last 109

observations reach a maximum of 500 observations at midday with no distinct peaks 110

during the day. 111
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Fig 3. Baseline activity patterns for weekday and weekend in Lower
Manhattan based on ofirst observations. The blue lines indicate the fraction of
clients identified in the network for each day of the study period and differentiated by
weekday and weekend. Holidays that occurred during the study period are also noted
with the red, green and yellow lines.

A unique diurnal pattern can be identified from aggregate ofirst/last observations. In 112

particular, discernible weekday peaks at 9 AM for ofirst observations and 6 PM for olast 113

observations are consistent with morning and evening rush hour periods and occur at 114

regular daily and weekly frequencies. During weekdays, the only notable exceptions 115

occur on holidays, as shown for July 4th in Fig 2. 116

The stability of this diurnal activity pattern is shown in Fig 3. The cumulative 117

fraction of ofirst observations, computed across 10 minute windows, show remarkable 118

day-to-day consistency. Fully 98% of weekday observations are within one standard 119

deviation from the mean and the average time difference from the mean is 20 minutes, 120

reaching a maximum of 30 minutes during periods of peak variability. More concretely, 121

the daily fraction of people arriving in Lower Manhattan varies by 20 minutes, on 122

average, for any given weekday. Fig 3 also captures the activity differences between 123

weekdays, weekends, and holidays. During weekdays, over half of the ofirst observations 124

occur between 6-10 AM, while weekends and holidays demonstrate a more gradual 125

population increase throughout the day, reflecting the differences in workday patterns 126

for those that work on holidays and/or weekends. Collectively, these observations reveal 127

a consistent pattern of aggregate worker activity in Lower Manhattan. 128

Patterns of Discrete Worker Activity 129

While daily worker activity demonstrates remarkable consistency in the aggregate, a 130

second analysis was performed to understand activity for discrete devices. The aim of 131

this process is to identify a ‘typical’ arrival time for each worker and assess how 132

individual devices deviate from their typical arrival time. The typical arrival time for a 133

device is defined as its median arrival time over the course of the study period. 134

Variability in arrival time is assessed by computing the average deviation (vj) of ofirst 135

observations from an individual’s mean and median arrival time. The average arrival 136

variability can be formulated as: 137

vj =
1

n

n∑
i=1

x̃j − oi, (1)
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Fig 4. Distribution of deviation from median arrival time. The dark shaded
area is the interquartile range and the light grey area is the 95% range. The black
vertical line is the median deviation.

where oi are device ofirst observations and x̃ is the median arrival time for each 138

device j. 139

The distribution of average arrival variability for all workers is shown in Fig 4. The 140

average deviation is 21.05 minutes with 50% of observations occurring between -10.22 141

and 60.74 minutes. Given that a positive deviation indicates a worker arriving prior to 142

their median time, on average, and a negative deviation indicates an arrival after their 143

median arrival time, the calculated range indicates consistent arrival patterns with 144

workers arriving up to an hour prior to their median arrival time on any given day, and 145

a smaller portion of the sample arriving up to 10 minutes later than their median arrival 146

time. 147

It is also important to note that the tails of this distribution may appear 148

unreasonable for a worker’s arrival schedule. Specifically, it seems unlikely that an 149

individual is, on average, arrives one hour later (or earlier) than their typical arrival 150

time. Instead, however, this activity pattern may not represent a worker whose daily 151

work routine is from 9-5, but rather workers who have irregular work hours and work 152

days. For example, it can be assumed a sample of the worker population visit Lower 153

Manhattan only occasionally, as they may regularly work in an office that is not located 154

in Lower Manhattan, travel extensively for work, or have a more flexible work schedule. 155

In such cases, the individual may meet the criteria to be classified as a worker, while 156

also demonstrating large variations in ofirst/last observations. Fig 4 shows that 50% of 157

observations fall within a one-hour time window and 95% fall approximately within a 158

two-hour time window, suggesting the presence of these types of workers is minimal in 159

the sample. 160

Workday Length in Lower Manhattan 161

Based on the difference between the ofirst/last observations for a specific device on a 162

given day, we compute the median duration for all devices present during a single day. 163

The median workday length throughout the study period is shown in Fig 5 and includes 164

the total worker count as defined by our filter method. The median workday length on 165

weekdays is found to be 7 hours and 40 minutes, which remains consistent throughout 166

the study period with exceptions during federal holidays as indicated by the vertical red 167

lines in Fig 5. 168
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Fig 5. Average workday length (orange) for users in Lower Manhattan and
the number of workers (blue). Red vertical lines indicate holidays.
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Fig 6. Time series plot of the median workday length for Lower Manhattan
differentiated by day of week. Three federal holidays are also labeled for reference.

An important observation in Figure 5 is the relationship between median workday 169

length and the total worker population. The weekday worker population in Lower 170

Manhattan peaks in June with an average population of 110,000 unique devices per day 171

and steadily declines to 90,000 per day in September. However, while a decline in 172

population observed from June to September is likely a result of regular seasonality 173

caused by workers leaving for vacation, the median workday length remains steady. 174

Only 9% of the variance in median workday length during weekdays can be explained by 175

changes in the population, when excluding federal holidays and weekdays that fall 176

directly before a federal holiday. 177

Workday lengths also vary by day-of-week as the time series shows in Fig 6. As one 178

might expect, the median workday length on Friday is 24 minutes shorter (5.24%) than 179

the median workday length observed Monday through Thursday. Shorter workday 180

lengths are also observed on days preceding federal holidays, which are 59 minutes 181

shorter (12.9%) than Monday through Thursday observations. 182

Discussion 183

In this research, we present a new approach for measuring worker activity and 184

quantifying workday length. Unlike traditional survey approaches, using Wi-Fi 185

information provides a robust and comprehensive data source to analyze localized 186

worker activity. We measure worker behavior by extracting distinct patterns in the 187

Wi-Fi probe request data that indicate worker presence, estimating workday lengths, 188
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and measuring the regularity of observed patterns over time. Following the classification 189

of workers based on device activity, we are then able to quantify arrivals and departures 190

from the study area, which are further extrapolated to understand the duration of 191

worker presence and the collective workday length in Lower Manhattan. 192

Indeed, the results from our approach to estimate workday length validate many of 193

the assumptions about worker activity in an urban commercial district. However, our 194

methodology provides new insight into specific characteristics of worker behavior. First, 195

our assessment of aggregate activity patterns shows notable regularity of worker activity 196

in Lower Manhattan. While arrival times may vary day-to-day, the overall fraction of 197

workers arriving in Lower Manhattan at certain times demonstrates a distinct pattern 198

with little variability. Collective ofirst/last observations occur during rush hour periods 199

with typical arrival and departure times that correspond to traditional workdays of 9am 200

to 5pm. 201

In addition to aggregate patterns of activity, we also demonstrate how variability in 202

worker arrival times. By evaluating the difference between typical arrival time and daily 203

variation in ofirst observation, we show that over 50% of workers on any given day arrive 204

prior to their regular (median) arrival time, suggesting not only are these workers 205

visiting Lower Manhattan regularly, but also highlights consistency in arrivals before a 206

specific time each day. This reinforces the expectation that workers will tend to arrive 207

before the typical start of the workday in order to avoid the negative consequences of 208

being ”late”. 209

We also demonstrate a new method for quantifying patterns of workday length. 210

Based on the difference between ofirst/last observations, the median workday length is 211

determined to be 7 hours and 40 minutes, which is consistent with the traditional 212

eight-hour workday. However, the use of Wi-Fi data to extrapolate this information 213

provides a more robust measurement of workday length, as well as additional insight 214

about how the length of the workday varies over daily, weekly, and seasonal cycles. 215

Finally, our findings suggest that worker productivity (assuming a constant worker 216

output per hour) fluctuates throughout the work week. While we observe relatively 217

stable workday lengths from Monday through Thursday, there is a measurable decline 218

on Fridays, especially when preceding a holiday. Although we do not explicitly attempt 219

to quantify productivity, our approach can be used to estimate hyperlocal variations 220

that can associated with other worker characteristics to estimate worker output. 221

Limitations 222

While this work demonstrates a novel approach to estimating workday length, there are 223

several important limitations that should be considered. One of the main limitations 224

relates to data quality and comprehensiveness. As discussed throughout this work, there 225

are limitations to understanding causes of variations in individual ofirst/last observations, 226

which may result directly from device activity or indirectly from the overall data 227

capture process. It is entirely possible that day-to-day variations in an individual’s 228

commute pattern and their activity throughout the day may cause a particular device to 229

be visible to the network at times that do not directly represent their workday patterns. 230

While we have tried to reduce this uncertainty as much as possible with our filtering 231

methods, as municipal Wi-Fi networks become more ubiquitous, covering large parts of 232

a city, the issue of network boundaries diminishes. 233

A similar limitation relates to the representativeness and overall capture rate of the 234

Wi-Fi network. It is likely that a sample population may have more than one Wi-Fi 235

enabled device or no device at all. In addition, devices that have turned off their Wi-Fi 236

transmitter will not be visible to the network. While this does limit our confidence that 237

the Wi-Fi data includes all potential workers throughout the study period, for the 238
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purposes of this research, a 100% capture rate is not required to estimate the median 239

workday length. 240

Furthermore, recent concerns over privacy have led to mobile device manufactures to 241

implement MAC address anonymization, which causes a device to change its MAC 242

address over time preventing identification of the same device across a study period. 243

The data obtained were pre-filtered by the Meraki platform to exclude randomized 244

MAC addresses. 245

A final limitation in this research is the duration of accessible data. Specifically, 246

there may be seasonality that we do not capture given the time period covered in the 247

dataset. Though it is not clear that this would have any significant implications for our 248

approach to calculating workday length, it is a consideration for future work and should 249

be more thoroughly assessed given data availability. 250

Conclusion 251

We have demonstrated a fundamentally new method for quantifying worker activity and 252

workday length using data from a publicly-accessible Wi-Fi network. Our approach is 253

able to produce both individual-level and aggregate estimates about labor supply using 254

the proxy of hours worked. We find workday lengths of 7 hours and 40 minutes on 255

average, which shorten substantially on Fridays and days surrounding holidays. We also 256

aggregate our estimates and find considerable seasonal variation in total workday hours 257

supplied in our study area. This dynamic pattern of hours worked suggests that our 258

methodology is able to accurately assess workday lengths at high spatial resolution and 259

temporal frequency. 260

The ability to estimate hyperlocal worker behavior has a broad range of applications 261

in numerous fields. From a transportation perspective, information on actual workday 262

patterns and associated commute modalities can assist in more robust planning and 263

timely service provision. Furthermore, understanding the variability in worker arrival 264

times to a specific area unlock new opportunities to evaluate the impact of staggered 265

work shifts on congestion and overcrowding. The analysis of economic statistics can also 266

be assisted through more precise estimates of localized economic output. In particular, 267

our estimates may be valuable in tracking high-frequency changes in labor supplied. 268

Though our study period features fairly constant economic output, sharp changes in 269

labor supply may be potentially detected more quickly using sensor data than through 270

conventional economic statistic collection methods. These data may, therefore, assist in 271

helping to “nowcast” layoffs and regional shocks, providing new tools to forecast and 272

respond to shifts in economic activity. 273

Supporting information 274

S2 Fig. 1 Locations of Wi-Fi access points in Lower Manhattan. Color 275

differences indicate different sub-networks in the study area. 276

S3 Fig. 2 Number of first/last seen events per 10 minute intervals in 277

Lower Manhattan throughout the month of July. The blue area indicates first 278

seen counts while the orange indicates last seen counts. The black lines indicate the 279

average count for the entire period and the shaded area indicates the July 4th holiday. 280

S3 Fig. 3 Baseline activity patterns for weekday and weekend in Lower 281

Manhattan based on ofirst observations. The blue lines indicate the fraction of 282

clients identified in the network for each day of the study period and differentiated by 283
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weekday and weekend. Holidays that occurred during the study period are also noted 284

with the red, green and yellow lines. 285

S3 Fig. 4 Distribution of individuals’ average deviation from their median 286

arrival time. The dark shaded area is the 50% quartile range and the light grey area 287

is the 95% range. The black vertical line is the median deviation. 288

S3 Fig. 5 Average workday length (orange) for users in Lower Manhattan 289

and the number of workers (blue). Red vertical lines indicate holidays. 290

S3 Fig. 6 Time series plot of the median workday length for Lower 291

Manhattan differentiated by day of week. Three federal holidays are also labeled 292

for reference. 293
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